Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427916

RESUMEN

Tanoak (Notholithocarpus densiflorus) is an evergreen tree in the Fagaceae family found in California and southern Oregon. Historically, tanoak acorns were an important food source for Native American tribes and the bark was used extensively in the leather tanning process. Long considered a disjunct relictual element of the Asian stone oaks (Lithocarpus spp.), phylogenetic analysis has determined that the tanoak is an example of convergent evolution. Tanoaks are deeply divergent from oaks (Quercus) of the Pacific Northwest and comprise a new genus with a single species. These trees are highly susceptible to 'sudden oak death' (SOD), a plant pathogen (Phytophthora ramorum) that has caused widespread mortality of tanoaks. Here, we set out to assemble the genome and perform comparative studies among a number of individuals that demonstrated varying levels of susceptibility to SOD. First, we sequenced and de novo assembled a draft reference genome of N. densiflorus using co-barcoded library processing methods and an MGI DNBSEQ-G400 sequencer. To increase the contiguity of the final assembly, we also sequenced Oxford Nanopore (ONT) long reads to 30X coverage. To our knowledge, the draft genome reported here is one of the more contiguous and complete genomes of a tree species published to date, with a contig N50 of ∼1.2 Mb, a scaffold N50 of ∼2.1 Mb, and a complete gene score of 95.5% through BUSCO analysis. In addition, we sequenced 11 genetically distinct individuals and mapped these onto the draft reference genome enabling the discovery of almost 25 million single nucleotide polymorphisms and ∼4.4 million small insertions and deletions. Finally, using co-barcoded data we were able to generate complete haplotype coverage of all 11 genomes.

3.
Genome ; 60(9): 756-761, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28472589

RESUMEN

One of the remarkable aspects of the tremendous biodiversity found in tropical forests is the wide range of evolutionary strategies that have produced this diversity, indicating many paths to diversification. We compare two diverse groups of trees with profoundly different biologies to discover whether these differences are reflected in their genomes. Ficus (Moraceae), with its complex co-evolutionary relationship with obligate pollinating wasps, produces copious tiny seeds that are widely dispersed. Lithocarpus (Fagaceae), with generalized insect pollination, produces large seeds that are poorly dispersed. We hypothesize that these different reproductive biologies and life history strategies should have a profound impact on the basic properties of genomic divergence within each genus. Using shallow whole genome sequencing for six species of Ficus, seven species of Lithocarpus, and three outgroups, we examined overall genomic diversity, how it is shared among the species within each genus, and the fraction of this shared diversity that agrees with the major phylogenetic pattern. A substantially larger fraction of the genome is shared among species of Lithocarpus, a considerable amount of this shared diversity was incongruent with the general background history of the genomes, and each fig species possessed a substantially larger fraction of unique diversity than Lithocarpus.


Asunto(s)
Evolución Molecular , Fagaceae/genética , Ficus/genética , ADN de Plantas , Fagaceae/clasificación , Ficus/clasificación , Variación Genética , Genoma de Planta , Filogenia , Polinización , Secuenciación Completa del Genoma
4.
Plant Divers ; 39(6): 331-337, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30159526

RESUMEN

The strength and expertise that botanic gardens bring to conservation are based on their detailed knowledge and understanding of the care, management, and biology of a diversity of plant species. This emphasis on the organism has led to many ex-situ and in-situ conservation programs aimed at protecting endangered species, restoring threatened populations, and establishing living plant and seed collections of endangered species. In China, the scale and pace of change in land and resource use, often leading to environmental degradation, has created a strong emphasis on improving environmental conditions. If done properly, being "green" can be a surprisingly complex issue, because it should encompass and exploit the whole of plant diversity and function. Unfortunately, 'green' often includes a small portion of this whole. Earth's rich plant diversity presents considerable opportunity but requires expertise and knowledge for stable and beneficial management. With the dawning of the Anthropocene, we should strive to live on a "Garden Earth", where we design and manage our environments, both built and natural, to create a healthy, beneficial living landscape for people and other organisms. The staff of botanic gardens worldwide and the living collections they maintain embody the best examples of sustainable, beautiful, and beneficial environments that thrive on plant diversity. This expertise should be a fundamental resource for agencies in all sectors responsible for managing and designing "green" infrastructure. Botanic gardens should actively engage and contribute to these opportunities, from large public infrastructure projects to small private conservation efforts. Here, we discuss several ongoing conservation efforts, primarily in China, and attempt to identify areas where botanic gardens could make a significant and meaningful difference.

5.
PLoS One ; 8(7): e66838, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840867

RESUMEN

In previous studies, the Alfin1 gene, a transcription factor, enhanced salt tolerance in alfalfa, primarily through altering gene expression levels in the root. Here, we examined the molecular evolution of the Alfin-like (AL) proteins in two Arabidopsis species (A. lyrata and A. thaliana) and a salt-tolerant close relative Thellungiella halophila. These AL-like proteins could be divided into four groups and the two known DUF3594 and PHD-finger domains had co-evolved within each group of genes, irrespective of species, due to gene duplication events in the common ancestor of all three species while gene loss was observed only in T. halophila. To detect whether natural selection acted in the evolution of AL genes, we calculated synonymous substitution ratios (dn/ds) and codon usage statistics, finding positive selection operated on four branches and significant differences in biased codon usage in the AL family between T. halophila and A. lyrata or A. thaliana. Distinctively, only the AL7 branch was under positive selection on the PHD-finger domain and the three members on the branch showed the smallest difference when codon bias was evaluated among the seven clusters. Functional analysis based on transgenic overexpression lines and T-DNA insertion mutants indicated that salt-stress-induced AtAL7 could play a negative role in salt tolerance of A. thaliana, suggesting that adaptive evolution occurred in the members of AL gene family.


Asunto(s)
Arabidopsis/genética , Brassicaceae/genética , Evolución Molecular , Proteínas de Plantas/genética , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Brassicaceae/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutagénesis Insercional , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Tolerantes a la Sal/genética
6.
PLoS One ; 7(11): e48995, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185288

RESUMEN

Direct analysis of unassembled genomic data could greatly increase the power of short read DNA sequencing technologies and allow comparative genomics of organisms without a completed reference available. Here, we compare 174 chloroplasts by analyzing the taxanomic distribution of short kmers across genomes [1]. We then assemble de novo contigs centered on informative variation. The localized de novo contigs can be separated into two major classes: tip = unique to a single genome and group = shared by a subset of genomes. Prior to assembly, we found that ~18% of the chloroplast was duplicated in the inverted repeat (IR) region across a four-fold difference in genome sizes, from a highly reduced parasitic orchid [2] to a massive algal chloroplast [3], including gnetophytes [4] and cycads [5]. The conservation of this ratio between single copy and duplicated sequence was basal among green plants, independent of photosynthesis and mechanism of genome size change, and different in gymnosperms and lower plants. Major lineages in the angiosperm clade differed in the pattern of shared kmers and de novo contigs. For example, parasitic plants demonstrated an expected accelerated overall rate of evolution, while the hemi-parasitic genomes contained a great deal more novel sequence than holo-parasitic plants, suggesting different mechanisms at different stages of genomic contraction. Additionally, the legumes are diverging more quickly and in different ways than other major families. Small duplicated fragments of the rrn23 genes were deeply conserved among seed plants, including among several species without the IR regions, indicating a crucial functional role of this duplication. Localized de novo assembly of informative kmers greatly reduces the complexity of large comparative analyses by confining the analysis to a small partition of data and genomes relevant to the specific question, allowing direct analysis of next-gen sequence data from previously unstudied genomes and rapid discovery of informative candidate regions.


Asunto(s)
Cloroplastos/genética , Genoma de Planta/genética , Genómica , Secuencia Conservada/genética , Mapeo Contig , Tamaño del Genoma , Plantas/clasificación , Plantas/genética , Polimorfismo Genético , Estándares de Referencia
7.
Mol Ecol ; 19 Suppl 1: 147-61, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20331777

RESUMEN

Most comparative genomic analyses of short-read sequence (SRS) data rely upon the prior assembly of a reference sequence. Here, we present an assembly free analysis of SRS data that discovers sequence variants among focal genomes by tabulating the presence and frequency of 'complex' fragments in the data. Using data from nine tree species, we compare genomic diversity from populations to families. As a control, we simulated SRS data for three known plant genomes. The results provide insight into the quality and distributional bias of the sequencing reaction. Three main types of informative complexmers were identified, each possessing unique statistical properties. Type I complexmers are unique to a genome but suffer from a high false positive rate, being highly dependent on read coverage and distribution. Type II complexmers are shared between two genomes and can highlight potential copy-number differences. Type III complexmers are exclusive to a subset of genomes and can be useful for associating genetic differences with phenotypic or geographic variation. At the population level in an endangered timber species, numerous markers were identified that could potentially determine geographic origin of individuals and regulate international trade. We observed that the genomic data for the four fig species were more divergent than for stone oak species, possibly due to their complex pollination syndrome and high rates of gene flow. Our approach greatly enhances the application of SRS technology to the study of non-model organisms and directly identifies the most informative genetic elements for more detailed study and assembly.


Asunto(s)
Hibridación Genómica Comparativa , Genoma de Planta , Genómica/métodos , Árboles/genética , ADN de Plantas/genética , Ficus/genética , Genética de Población , Quercus/genética , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...